

 Navigation

 	
 index

 	
 next |

 	Hitch 0.0.1 documentation

Welcome to Hitch’s documentation!

Contents:

	Installation

	The Uploader
	Storage Adapters

	Version Descriptions

	File Naming

	Integration Examples
	Laravel

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Clark Fischer.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hitch 0.0.1 documentation

Installation

Hitch comes bundled as a
package [https://packagist.org/packages/clarkf/hitch] in the Packagist [https://packagist.org/]
repository.

Ensure that you have setup composer, and add clarkf/hitch to your
composer.json file:

{
 "require": {
 "clarkf/hitch": "@dev-master"
 }
}

Be careful, Hitch has not yet been fully released, and as such, does
not have any tagged versions within Packagist. By requiring
@dev-master, you will get the most current version from the Github
Repository [https://github.com/clarkf/hitch]. Be sure to verify the build status [https://travis-ci.org/clarkf/hitch] before including it
in your project!

[image: https://travis-ci.org/clarkf/hitch.png?branch=master]
 [https://travis-ci.org/clarkf/hitch]

 Copyright 2014, Clark Fischer.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hitch 0.0.1 documentation

The Uploader

The Uploader is the core of Hitch. It directs your application how and
where to store files. Simply define an uploader by extending
Hitch\Uploader.

class MyUploader extends \Hitch\Uploader {}

The most important method provided by an uploader is its store()
method. Simply provide a File object, and Hitch will take care of
the rest:

public function controllerAction()
{
 $file = $this->getRequest()->getFile('file');

 $uploader = new MyUploader();

 $uploader->store($file);
}

Storage Adapters

The uploader passes the files that it generates off to Storage
Adapters. You can specify which storage adapters to use by overriding
the uploader’s getStorageAdapters() method:

public function getStorageAdapters()
{
 $root_path = get_path_of_public_dir();

 return array(
 new \Hitch\Storage\File($root_path)
);
}

File Storage Adapter

Hitch\Storage\File provides a means to store a file on the local
filesystem. It’s also the default storage adapter. Simply pass the root
upload directory as the constructor, and your files will be stored:

new \Hitch\Storage\File($root . "/public/images/");

Version Descriptions

Hitch will automatically generate different versions of each uploaded
files for you. You must describe each version that you require:

public function getVersionDescriptions()
{
 'thumb' => array(
 'resizeKeepAspect' => array(100, 100)
),
 'icon' => array(
 'resize' => array(16, 16)
)
}

resize process

resize an image to exactly the supplied dimensions

"resize" => array(100, 100)

[image: _images/original.jpg]
becomes

[image: _images/resize.100x100.jpg]

resizeKeepAspect process

Resize an image while maintaining its aspect ratio.

"resizeKeepAspect" => array(100, 100)

[image: _images/original.jpg]
becomes

[image: _images/resizeKeepAspect.100x100.jpg]
Available processes:

	resizeKeepAspect($width, $height) - Resize the image to the
specified size, while keeping the aspect ratio

File Naming

You may specify how your files are named by overriding getFilename()
and getVersionPath():

public function getFilename($original, $version = null)
{
 // Save files with timestamps
 $extension = $original->getExtension();
 return microtime(true) . $extension;
}

public function getVersionPath($original, $version = null)
{
 $filename = $this->getFilename($original, $version);

 // Save versions in their own subdirectory
 if (is_null($version)) {
 return "images/" . $filename;
 } else {
 return "images/" . $version . "/" . $filename;
 }
}

 Copyright 2014, Clark Fischer.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	Hitch 0.0.1 documentation

Integration Examples

Laravel

<?php
namespace Acme\Models;

use Illuminate\Database\Eloquent\Model;
use Acme\Uploaders\ImageUploader;
use Symfony\Components\HttpFoundation\File\File;

class Image extends Model
{
 protected $fillable = array(
 /* .. */
 "image",
 /* .. */
);

 /**
 * @var Hitch\Uploader The uploader
 */
 protected $uploader;

 /**
 * @var File $file The file to upload
 */
 protected $file;

 /**
 * Initialize model events
 *
 * @return void
 */
 public static function boot()
 {
 // Call the parent's boot method
 parent::boot();

 // Attach to this model's 'saved' event.
 self::saved(function ($image) {

 // Check to see if there was an image to upload
 if (!isset($image->image)) {
 return;
 }

 // Pass the File to the Uploader's #store() method
 $image->getUploader()->store($image->image);
 });
 }

 /**
 * Get the uploader associated with this model
 *
 * @return Hitch\Uploader The uploader
 */
 public function getUploader()
 {
 // Check to see if uploader has been initialized. If it hasn't,
 // initialize it now
 if (!isset($this->uploader)) {
 $this->uploader = new ImageUploader;
 }

 return $this->uploader;
 }

 /**
 * Set the image attribute
 *
 * @param File $file The file to store
 *
 * @return void
 */
 public function setImageAttribute(File $file)
 {
 // Note that we don't want to #store() the file now; the model
 // has not yet passed validation. For now, we'll just store it
 // until the model has been saved.
 $this->file = $file;
 }
}

 Copyright 2014, Clark Fischer.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	Hitch 0.0.1 documentation

Index

 Copyright 2014, Clark Fischer.
 Created using Sphinx 1.2.

 _static/ajax-loader.gif

_static/up.png

_static/file.png

_static/up-pressed.png

_static/comment.png

_static/down.png

_images/resize.100x100.jpg

_images/original.jpg

_images/resizeKeepAspect.100x100.jpg

_static/plus.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		Hitch 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Clark Fischer.
 Created using Sphinx 1.2.

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

