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Installation

Hitch comes bundled as a
package [https://packagist.org/packages/clarkf/hitch] in the Packagist [https://packagist.org/]
repository.

Ensure that you have setup composer, and add clarkf/hitch to your
composer.json file:

{
    "require": {
        "clarkf/hitch": "@dev-master"
    }
}





Be careful, Hitch has not yet been fully released, and as such, does
not have any tagged versions within Packagist.  By requiring
@dev-master, you will get the most current version from the Github
Repository [https://github.com/clarkf/hitch]. Be sure to verify the build status [https://travis-ci.org/clarkf/hitch] before including it
in your project!

[image: https://travis-ci.org/clarkf/hitch.png?branch=master]
 [https://travis-ci.org/clarkf/hitch]
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The Uploader

The Uploader is the core of Hitch.  It directs your application how and
where to store files.  Simply define an uploader by extending
Hitch\Uploader.

class MyUploader extends \Hitch\Uploader {}





The most important method provided by an uploader is its store()
method.  Simply provide a File object, and Hitch will take care of
the rest:

public function controllerAction()
{
     $file = $this->getRequest()->getFile('file');

     $uploader = new MyUploader();

     $uploader->store($file);
}






Storage Adapters

The uploader passes the files that it generates off to Storage
Adapters.  You can specify which storage adapters to use by overriding
the uploader’s getStorageAdapters() method:

public function getStorageAdapters()
{
    $root_path = get_path_of_public_dir();

    return array(
        new \Hitch\Storage\File($root_path)       
    );
}






File Storage Adapter

Hitch\Storage\File provides a means to store a file on the local
filesystem. It’s also the default storage adapter. Simply pass the root
upload directory as the constructor, and your files will be stored:

new \Hitch\Storage\File($root . "/public/images/");










Version Descriptions

Hitch will automatically generate different versions of each uploaded
files for you.  You must describe each version that you require:

public function getVersionDescriptions()
{
    'thumb' => array(
        'resizeKeepAspect' => array(100, 100)
    ),
    'icon' => array(
        'resize' => array(16, 16)
    )
}






resize process

resize an image to exactly the supplied dimensions

"resize" => array(100, 100)





[image: _images/original.jpg]
becomes

[image: _images/resize.100x100.jpg]



resizeKeepAspect process

Resize an image while maintaining its aspect ratio.

"resizeKeepAspect" => array(100, 100)





[image: _images/original.jpg]
becomes

[image: _images/resizeKeepAspect.100x100.jpg]
Available processes:


	resizeKeepAspect($width, $height) - Resize the image to the
specified size, while keeping the aspect ratio








File Naming

You may specify how your files are named by overriding getFilename()
and getVersionPath():

public function getFilename($original, $version = null)
{
    // Save files with timestamps
    $extension = $original->getExtension();
    return microtime(true) . $extension;
}

public function getVersionPath($original, $version = null)
{
    $filename = $this->getFilename($original, $version);

    // Save versions in their own subdirectory
    if (is_null($version)) {
        return "images/" . $filename;
    } else {
        return "images/" . $version . "/" . $filename;
    }
}
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Integration Examples


Laravel

<?php
namespace Acme\Models;

use Illuminate\Database\Eloquent\Model;
use Acme\Uploaders\ImageUploader;
use Symfony\Components\HttpFoundation\File\File;

class Image extends Model
{
    protected $fillable = array(
        /* .. */
        "image",
        /* .. */
    );

    /**
     * @var Hitch\Uploader The uploader
     */
    protected $uploader;

    /**
     * @var File $file The file to upload
     */
    protected $file;

    /**
     * Initialize model events
     *
     * @return void
     */
    public static function boot()
    {
        // Call the parent's boot method
        parent::boot();

        // Attach to this model's 'saved' event.
        self::saved(function ($image) {

            // Check to see if there was an image to upload
            if (!isset($image->image)) {
                return;
            }

            // Pass the File to the Uploader's #store() method
            $image->getUploader()->store($image->image);
        });
    }

    /**
     * Get the uploader associated with this model
     *
     * @return Hitch\Uploader The uploader
     */
    public function getUploader()
    {
        // Check to see if uploader has been initialized.  If it hasn't,
        // initialize it now
        if (!isset($this->uploader)) {
            $this->uploader = new ImageUploader;
        }

        return $this->uploader;
    }

    /**
     * Set the image attribute
     *
     * @param File $file The file to store
     *
     * @return void
     */
    public function setImageAttribute(File $file)
    {
        // Note that we don't want to #store() the file now; the model
        // has not yet passed validation.  For now, we'll just store it
        // until the model has been saved.
        $this->file = $file;
    }
}
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